all repos — nand2tetris @ c7c3d810220eef180364e7d57c0dfb5a2cd152a9

my nand2tetris progress

projects/07/src/codewriter.h

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
#ifndef _CODEWRITER_H
#define _CODEWRITER_H

// 'codewriter.h' roughly corresponds to the 'CodeWriter' module specified in
// nand2tetris, with a few liberties taken.

#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "parser.h"
#include "util.h"

#define _DEBUG

// memory mapping:
// 0-15     virtual registers R0-R15
// 16-255   static variables
// 256-2047 stack
#define SP       (0)   // points to word ahead of top of stack
#define LCL      (1)   // points to local segment
#define ARG      (2)   // points to argument segment
#define POINTER  (3)
#define THIS     (3)   // 
#define THAT     (4)   // 
#define TEMP     (5)   // 
#define R13      (13)  // R13-R15 are scratch space that
#define R14      (14)  // VM-generated assembly can use
#define R15      (15)  // for whatever.
#define STATIC   (16)  // start of static variables segment (240 words, 16-255)

char vm_init[] = "@256\n"  // starting address of stack (nothing pushed yet)
                 "D=A\n"   // D = 256
                 "@SP\n"   // A = <constant representing address of SP>
                 "M=D\n"   // <memory pointed to by SP> = 256
                 "\n";
// TODO: add initializers for argument, local, static, constant, this, that

char *static_sym_name;

// static segment index indexes into map, retrieves hack assembly symbol offset
#define MAX_STATIC_SYMBOLS  (240)  // for whatever.
uint16_t static_symbol_map[MAX_STATIC_SYMBOLS];
uint8_t g_symbol_offset_bump = 0;  // holds current largest symbol offset, bumps


void write_vm_init(FILE *fp)
{
	//fprintf(fp, vm_init);
	fprintf(fp, "// TODO eventually output VM initialization assembly\n");
}

static bool write_arithmetic(struct vm_instruction_t *vm_instr, FILE *fp)
{
	// TODO: write assembly code for 'add' and 'neg' instructions, turn into
	// codegen (depend on if unary/binary operation)
	// Binary: load RAM[SP], D=M, RAM[SP]--, M=D<op>M (I _think_ this is good)
	// Unary: load RAM[SP], M=<op>M                   (I _think_ this is good)
	fprintf(fp, "ARITHMETIC INSTRUCTION: ");
	print_vm_instruction(vm_instr);
	return true;
}

static bool resolve_static_address(struct vm_instruction_t *vm_instr,
                                   uint16_t *addr)
{
	uint16_t symbol_offset;
	if (vm_instr->arg2 >= MAX_STATIC_SYMBOLS) {
		err("error: arg2 too large, >= %u\n", MAX_STATIC_SYMBOLS);
		return false;
	}

	symbol_offset = static_symbol_map[vm_instr->arg2];
	if (symbol_offset == 0xffff) {  // new offset not in map (-1 special)
		if (g_symbol_offset_bump >= MAX_STATIC_SYMBOLS) {
			err("error: symbol offset grew too large (>= %u), "
			    "too many static variables\n", MAX_STATIC_SYMBOLS);
			return false;
		}
		static_symbol_map[vm_instr->arg2] = g_symbol_offset_bump;
		*addr = g_symbol_offset_bump;
		++g_symbol_offset_bump;  // bump global symbol offset
	} else {
		// offset was found in map, return symbol value/index
		*addr = symbol_offset;
	}

	return true;
}

// returns addr
static bool resolve_segment_offset(struct vm_instruction_t *vm_instr,
                                   uint16_t *addr)
{
	// TODO implement
	// resolve base (address) of segment
	// check index is valid for that segment
	// add index vm_instr->arg2 to address
	// set to *addr
	return true;
}

// push 16-bit value from segment offset onto top of stack
static bool write_push(struct vm_instruction_t *vm_instr, FILE *fp)
{
	uint16_t addr, arg2 = vm_instr->arg2;

	// TODO: maybe add SP counter/check to catch overflows
	// TODO: if vm_instr->arg1 == "constant", push_constant, else push_segment
	char const_template[] = "@%hu\n"       // A = constant
	                        "D=A\n%s";     // D = constant
	char addr_template[] = "@%hu\n"        // A = segment + index
	                       "D=M\n%s";      // D = RAM[segment + index]
	char static_template[] = "@%s.%hu\n"   // A = segment + index
	                         "D=M\n%s";    // D = RAM[segment + index]
	char indirect_template[] = "@%hu\n"    // A = segment
	                           "D=A\n"     // D = segment
	                           "@%hu\n"    // A = index
	                           "A=A+D\n"   // A = segment + index
	                           "D=M\n%s";  // D = RAM[segment + index]
	char push_boilerplate[] = "@SP\n"
	                          "M=M+1\n"   // RAM[SP]++    // inc SP
	                          "A=M-1\n"   // A = RAM[SP] - 1 // prev top
	                          "M=D\n";    // RAM[SP] = constant

	// TODO: move segment resolution to separate function
	if (!strcmp(vm_instr->arg1, "constant")) {
		// TODO: check size of constant (allowed to be > 32,767?)
		// TODO: look up in nand2tetris forums in case issue already noted
		fprintf(fp, const_template, arg2, push_boilerplate);
	} else if (!strcmp(vm_instr->arg1, "argument")) {
		fprintf(fp, indirect_template, ARG, arg2, push_boilerplate);
	} else if (!strcmp(vm_instr->arg1, "local")) {
		fprintf(fp, indirect_template, LCL, arg2, push_boilerplate);
	} else if (!strcmp(vm_instr->arg1, "static")) {
		if (!resolve_static_address(vm_instr, &addr)) {
			return false;
		}
		fprintf(fp, static_template, static_sym_name, addr,
		        push_boilerplate);
	} else if (!strcmp(vm_instr->arg1, "this")) {
		fprintf(fp, indirect_template, THIS, arg2, push_boilerplate);
	} else if (!strcmp(vm_instr->arg1, "that")) {
		fprintf(fp, indirect_template, THAT, arg2, push_boilerplate);
	} else if (!strcmp(vm_instr->arg1, "pointer")) {
		addr = POINTER + vm_instr->arg2;
		fprintf(fp, addr_template, addr, push_boilerplate);
	} else if (!strcmp(vm_instr->arg1, "temp")) {
		addr = TEMP + vm_instr->arg2;
		fprintf(fp, addr_template, addr, push_boilerplate);
	} else {
		err("error: invalid segment name \"%s\"\n",
		    vm_instr->arg1);
		return false;
	}

	return true;
}

// pop 16-bit value from top of stack into segment offset
static bool write_pop(struct vm_instruction_t *vm_instr, FILE *fp)
{
	// TODO: maybe add SP counter/check to catch overflows
	// can use R13-R15 for scratch space
	uint16_t addr, arg2 = vm_instr->arg2;
	char addr_template[] = "@%hu\n"        // A = segment + index
	                       "D=M\n%s";      // D = RAM[segment + index]
	char static_template[] = "@%s.%hu\n"   // A = segment + index
	                         "D=M\n%s";    // D = RAM[segment + index]
	char indirect_template[] = "@%hu\n"    // @segment
	                           "D=A\n"     // D = segment
	                           "@%hu\n"    // @index
	                           "A=A+D\n"   // A = segment + index
	                           "D=M\n%s";  // D = RAM[segment + index]
	char pop_boilerplate[] = "@SP\n"
	                         "AM=M-1\n"    // RAM[SP]--, A = RAM[SP]
	                         "M=D\n";      // RAM[SP] = D

	// TODO: move segment resolution to separate function
	if (!strcmp(vm_instr->arg1, "argument")) {
		fprintf(fp, indirect_template, ARG, arg2, pop_boilerplate);
	} else if (!strcmp(vm_instr->arg1, "local")) {
		fprintf(fp, indirect_template, LCL, arg2, pop_boilerplate);
	} else if (!strcmp(vm_instr->arg1, "static")) {
		if (!resolve_static_address(vm_instr, &addr)) {
			return false;
		}
		fprintf(fp, static_template, static_sym_name, addr,
		        pop_boilerplate);
	} else if (!strcmp(vm_instr->arg1, "this")) {
		fprintf(fp, indirect_template, THIS, arg2, pop_boilerplate);
	} else if (!strcmp(vm_instr->arg1, "that")) {
		fprintf(fp, indirect_template, THAT, arg2, pop_boilerplate);
	} else if (!strcmp(vm_instr->arg1, "pointer")) {
		addr = POINTER + vm_instr->arg2;
		fprintf(fp, addr_template, addr, pop_boilerplate);
	} else if (!strcmp(vm_instr->arg1, "temp")) {
		addr = TEMP + vm_instr->arg2;
		fprintf(fp, addr_template, addr, pop_boilerplate);
	} else {
		err("error: invalid segment name \"%s\"\n",
		    vm_instr->arg1);
		return false;
	}

	return true;
}

bool write_instruction(struct vm_instruction_t *vm_instr, FILE *fp)
{
	fprintf(fp, "\n// %lu: %s\n", file_line_no, vm_instr->line);
	if (vm_instr->cmd == C_ARITHMETIC) {
		write_arithmetic(vm_instr, fp);
	} else if (vm_instr->cmd == C_PUSH) {
		write_push(vm_instr, fp);
	} else if (vm_instr->cmd == C_POP) {
		write_pop(vm_instr, fp);
	} else {
		// TODO: eventually error if unrecognized instruction
		print_vm_instruction(vm_instr);
	}
	return true;
}

#endif // _CODEWRITER_H