projects/08/src/codewriter.h
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 |
#ifndef _CODEWRITER_H #define _CODEWRITER_H // 'codewriter.h' roughly corresponds to the 'CodeWriter' module specified in // nand2tetris, with a few liberties taken. #include <stdbool.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include "parser.h" #include "util.h" #define _DEBUG // memory mapping: // 0-15 virtual registers R0-R15 // 16-255 static variables // 256-2047 stack #define SP (0) // points to word ahead of top of stack #define LCL (1) // points to local segment #define ARG (2) // points to argument segment #define POINTER (3) #define THIS (3) #define THAT (4) #define TEMP (5) #define R13 (13) // R13-R15 are scratch space that #define R14 (14) // VM-generated assembly can use #define R15 (15) // for whatever. #define STATIC (16) // start of static variables segment (240 words, 16-255) char *static_sym_name; // retrieve hack assembly RAM offset given static "symbol" number #define MAX_STATIC_SYMBOLS (240) // for whatever. uint16_t static_symbol_map[MAX_STATIC_SYMBOLS]; // 0..239 maps to 16..255 uint8_t g_symbol_offset_start = 0; // set to g_symbol_offset_stop on new file uint8_t g_symbol_offset_stop = 0; // bump when new static number (sym) found char comp_vm_funcs[] = "@__comp_funcs_end\n" "0;JMP\n" "\n" "(__test_eq)\n" "@SP\n" "AM=M-1\n" // RAM[SP]--, A = RAM[SP] "D=M\n" // D = RAM[SP] (top stack val) "A=A-1\n" // --A (--> bottom stack val) "D=M-D\n" // if D == 0, equal "M=0\n" // prematurely push false "@__test_eq_neq\n" // if D == 0, equal "D;JNE\n" // if D != 0, not equal, jump "@SP\n" // get SP "A=M-1\n" // get bottom stack val address "M=-1\n" // push 0xffff (true) "(__test_eq_neq)\n" "@R13\n" // return address in RAM[R13] "A=M\n" // A = return address "0;JMP\n" // return "\n" "(__test_gt)\n" "@SP\n" "AM=M-1\n" // RAM[SP]--, A = RAM[SP] "D=M\n" // D = RAM[SP] (top stack val) "A=A-1\n" // --A (--> bottom stack val) "D=M-D\n" // if (D - M) > 0; push true "M=0\n" // prematurely push false "@__test_gt_neq\n" // if D == 0, equal "D;JLE\n" // if D != 0, not equal, jump "@SP\n" // get SP "A=M-1\n" // get bottom stack val address "M=-1\n" // push 0xffff (true) "(__test_gt_neq)\n" "@R13\n" // return address in RAM[R13] "A=M\n" // A = return address "0;JMP\n" // return "\n" "(__test_lt)\n" "@SP\n" "AM=M-1\n" // RAM[SP]--, A = RAM[SP] "D=M\n" // D = RAM[SP] (top stack val) "A=A-1\n" // --A (--> bottom stack val) "D=M-D\n" // if (D - M) < 0; push true "M=0\n" // prematurely push false "@__test_lt_neq\n" // if D == 0, equal "D;JGE\n" // if D != 0, not equal, jump "@SP\n" // get SP "A=M-1\n" // get bottom stack val address "M=-1\n" // push 0xffff (true) "(__test_lt_neq)\n" "@R13\n" // return address in RAM[R13] "A=M\n" // A = return address "0;JMP\n" // return "\n" "(__comp_funcs_end)\n"; char vm_init[] = "@261\n" // start address of stack (nothing pushed yet) "D=A\n" // D = 261 (why? because we are simulating a // "call", and a call would add 5 to SP, which // is expected to be initialized to 256. // TODO: verify if I also need to init LCL, ARG // THIS/THAT etc... (I probably don't) "@SP\n" // A = <constant representing address of SP> "M=D\n" // <memory pointed to by SP> = 256 "@Sys.init\n" // jump to Sys.init function (not call since "0;JMP\n\n"; // we don't need to set up the stack) // TODO: add initializers for argument, local, static, this, that // TODO only output vm_stop when Main.main char vm_stop[] = "(END)\n" // starting address of stack (nothing pushed yet) "@END\n" // D = 256 "0;JMP\n"; // A = <constant representing address of SP> void write_vm_init(FILE *fp) { fprintf(fp, "%s", vm_init); // can (un)comment to toggle init behavior fprintf(fp, "%s\n", comp_vm_funcs); } void write_vm_stop(FILE *fp) { fprintf(fp, "\n%s", vm_stop); } static bool write_arithmetic(struct vm_instruction_t *vm_instr, FILE *fp) { char binary_op_template[] = "@SP\n" "AM=M-1\n" // RAM[SP]--, A = RAM[SP] "D=M\n" // D = RAM[SP] (top stack val) "A=A-1\n" // --A (--> bottom stack val) "%s"; // arithmetic op goes here char unary_op_template[] = "@SP\n" "A=M-1\n" // A = SP - 1 "%s"; // arithmetic op goes here char op_add[] = "M=D+M\n"; char op_sub[] = "M=M-D\n"; char op_eq[] = "@%s_%lu_eq\n" // <- static_sym_name, file_line_number "D=A\n" "@R13\n" "M=D\n" "@__test_eq\n" "0;JMP\n" "(%s_%lu_eq)\n" // return here "\n"; char op_gt[] = "@%s_%lu_gt\n" // <- static_sym_name, file_line_number "D=A\n" "@R13\n" "M=D\n" "@__test_gt\n" "0;JMP\n" "(%s_%lu_gt)\n" // return here "\n"; char op_lt[] = "@%s_%lu_lt\n" // <- static_sym_name, file_line_number "D=A\n" "@R13\n" "M=D\n" "@__test_lt\n" "0;JMP\n" "(%s_%lu_lt)\n" // return here "\n"; char op_and[] = "M=D&M\n"; char op_or[] = "M=D|M\n"; char op_neg[] = "M=-M\n"; char op_not[] = "M=!M\n"; // binary operations if (!strncmp(vm_instr->arg1, "add", CMD_STR_MAX_LEN)) { fprintf(fp, binary_op_template, op_add); } else if (!strncmp(vm_instr->arg1, "sub", CMD_STR_MAX_LEN)) { fprintf(fp, binary_op_template, op_sub); } else if (!strncmp(vm_instr->arg1, "eq", CMD_STR_MAX_LEN)) { fprintf(fp, op_eq, static_sym_name, file_line_no, static_sym_name, file_line_no); } else if (!strncmp(vm_instr->arg1, "gt", CMD_STR_MAX_LEN)) { fprintf(fp, op_gt, static_sym_name, file_line_no, static_sym_name, file_line_no); } else if (!strncmp(vm_instr->arg1, "lt", CMD_STR_MAX_LEN)) { fprintf(fp, op_lt, static_sym_name, file_line_no, static_sym_name, file_line_no); } else if (!strncmp(vm_instr->arg1, "and", CMD_STR_MAX_LEN)) { fprintf(fp, binary_op_template, op_and); } else if (!strncmp(vm_instr->arg1, "or", CMD_STR_MAX_LEN)) { fprintf(fp, binary_op_template, op_or); // unary operations } else if (!strncmp(vm_instr->arg1, "neg", CMD_STR_MAX_LEN)) { fprintf(fp, unary_op_template, op_neg); } else if (!strncmp(vm_instr->arg1, "not", CMD_STR_MAX_LEN)) { fprintf(fp, unary_op_template, op_not); } else { err("error: invalid arithmetic op \"%s\"\n", vm_instr->arg1); return false; } return true; } // attempt to either 1) resolve an existing static variable, or 2) associate // the static variable with a new slot in the static section (which can later // be resolved) static bool resolve_static_address(struct vm_instruction_t *vm_instr, uint16_t *addr) { uint16_t sym_offset; // Basically, g_symbol_offset_start "indexes" into the VM files', and // g_symbol_offset_stop indexes the last added static var per file. // These variables serve as a window into static_symbol_map if (g_symbol_offset_stop >= MAX_STATIC_SYMBOLS) { err("error: symbol offset grew too large (>= %u), too many " "static variables\n", MAX_STATIC_SYMBOLS); return false; } for (sym_offset = g_symbol_offset_start; sym_offset <= g_symbol_offset_stop; ++sym_offset) { // found static "symbol" (number after push/pop static ...) if (static_symbol_map[sym_offset] == vm_instr->arg2) { *addr = sym_offset + 16; return true; } } // insert vm_instr->arg2 into next static_symbol_map slot static_symbol_map[g_symbol_offset_stop] = vm_instr->arg2; ++g_symbol_offset_stop; // bump stop offset *addr = (g_symbol_offset_stop - 1) + 16; // add 16 to map to RAM return true; } // push 16-bit value from segment offset onto top of stack static bool write_push(struct vm_instruction_t *vm_instr, FILE *fp) { uint16_t addr, arg2 = vm_instr->arg2; // TODO: could add SP counter/check to catch overflows char const_template[] = "@%hu\n" // A = constant "D=A\n%s"; // D = constant char addr_template[] = "@%hu\n" // A = segment + index "D=M\n%s"; // D = RAM[segment + index] char static_template[] = "@%s.%hu\n" // A = segment + index "D=M\n%s"; // D = RAM[segment + index] char indirect_template[] = "@%hu\n" // A = segment "D=M\n" // D = RAM[segment] "@%hu\n" // A = index "A=A+D\n" // A = segment + index "D=M\n%s"; // D = RAM[segment + index] char push_boilerplate[] = "@SP\n" "M=M+1\n" // RAM[SP]++ // inc SP "A=M-1\n" // A = RAM[SP] - 1 // prev top "M=D\n"; // RAM[SP] = constant if (!strcmp(vm_instr->arg1, "constant")) { // TODO: check size of constant (allowed to be > 32,767?) // TODO: look in nand2tetris forums in case issue already noted fprintf(fp, const_template, arg2, push_boilerplate); } else if (!strcmp(vm_instr->arg1, "argument")) { fprintf(fp, indirect_template, ARG, arg2, push_boilerplate); } else if (!strcmp(vm_instr->arg1, "local")) { fprintf(fp, indirect_template, LCL, arg2, push_boilerplate); } else if (!strcmp(vm_instr->arg1, "static")) { if (!resolve_static_address(vm_instr, &addr)) { return false; } fprintf(fp, static_template, static_sym_name, addr, push_boilerplate); } else if (!strcmp(vm_instr->arg1, "this")) { fprintf(fp, indirect_template, THIS, arg2, push_boilerplate); } else if (!strcmp(vm_instr->arg1, "that")) { fprintf(fp, indirect_template, THAT, arg2, push_boilerplate); } else if (!strcmp(vm_instr->arg1, "pointer")) { addr = POINTER + vm_instr->arg2; fprintf(fp, addr_template, addr, push_boilerplate); } else if (!strcmp(vm_instr->arg1, "temp")) { addr = TEMP + vm_instr->arg2; fprintf(fp, addr_template, addr, push_boilerplate); } else { err("error: invalid segment name \"%s\"\n", vm_instr->arg1); return false; } return true; } // pop 16-bit value from top of stack into segment offset static bool write_pop(struct vm_instruction_t *vm_instr, FILE *fp) { // TODO: could add SP counter/check to catch overflows uint16_t addr, arg2 = vm_instr->arg2; char pop_indirect_template[] = "@%hu\n" // @segment "D=M\n" // D = segment "@%hu\n" // @index "D=A+D\n" // A = segment + index "@R13\n" "M=D\n" // RAM[13] = segment + index "@SP\n" // "AM=M-1\n" // "D=M\n" // "@R13\n" // "A=M\n" // "M=D\n"; // char pop_addr_template[] = "@SP\n" "AM=M-1\n" // decrement SP "D=M\n" // "pop" (read) value into D "@%hu\n" // load address "M=D\n"; // "pop" (write) value to RAM char pop_static_template[] = "@SP\n" "AM=M-1\n" // decrement SP "D=M\n" // "pop" (read) value into D "@%s.%hu\n" // A = segment + index "M=D\n"; // RAM[segment + index] = D if (!strcmp(vm_instr->arg1, "argument")) { fprintf(fp, pop_indirect_template, ARG, arg2); } else if (!strcmp(vm_instr->arg1, "local")) { fprintf(fp, pop_indirect_template, LCL, arg2); } else if (!strcmp(vm_instr->arg1, "static")) { if (!resolve_static_address(vm_instr, &addr)) { return false; } fprintf(fp, pop_static_template, static_sym_name, addr); } else if (!strcmp(vm_instr->arg1, "this")) { fprintf(fp, pop_indirect_template, THIS, arg2); } else if (!strcmp(vm_instr->arg1, "that")) { fprintf(fp, pop_indirect_template, THAT, arg2); } else if (!strcmp(vm_instr->arg1, "pointer")) { addr = POINTER + vm_instr->arg2; fprintf(fp, pop_addr_template, addr); } else if (!strcmp(vm_instr->arg1, "temp")) { addr = TEMP + vm_instr->arg2; fprintf(fp, pop_addr_template, addr); } else { err("error: invalid segment name \"%s\"\n", vm_instr->arg1); return false; } return true; } static bool write_label(struct vm_instruction_t *vm_instr, FILE *fp) { char label_asm[] = "(%s)\n"; fprintf(fp, label_asm, vm_instr->arg1); return true; } static bool write_goto(struct vm_instruction_t *vm_instr, FILE *fp) { char goto_asm[] = "@%s\n" "0;JMP\n"; fprintf(fp, goto_asm, vm_instr->arg1); return true; } static bool write_if(struct vm_instruction_t *vm_instr, FILE *fp) { char if_asm[] = "@SP\n" // pop register D "AM=M-1\n" "D=M\n" // pop value into D register "@%s\n" "D;JNE\n"; fprintf(fp, if_asm, vm_instr->arg1); return true; } ////////// // // The Elements of Computing Systems, 2nd edition, pg. 214 // // CALLING CONVENTIONS STACK DIAGRAM // =================================== // Low memory addresses // // ... similar blocks above ... // |--------------------| \ // | some value | | Local variables/working stack of _caller_ // |--------------------| | // | some value | | // |--------------------| < -------- BEGIN FUNCTION CALL -------- // ARG -> | argument 0 | | Argument segment of _callee_: // |--------------------| | Pushed by caller before calling // | argument 1 | | callee using 'call' command. // |--------------------| | // | ... | | // |--------------------| < // LCL-5 -> | return address | | Saved frame of _caller_: // |--------------------| | Pushed by the VM when handling // LCL-4 -> | saved LCL | | the 'call' command. // |--------------------| | When handling 'return', the VM // LCL-3 -> | saved ARG | | pops these values and uses them // |--------------------| | for restoring the memory segments // LCL-2 -> | saved THIS | | of, and returning to, the caller's // |--------------------| | code. // LCL-1 -> | saved THAT | | // |--------------------| < // LCL -> | local 0 | | The local segment of _callee_: // |--------------------| | Initialized by the VM when handling // | local 1 | | the 'function' command. // |--------------------| | // | working stack... | | Working stack of _callee_ // |--------------------| < // SP -> | < undefined > | | // +--------------------+ | // _||_ | // direction stack \ / / // grows (up) \/ // // High memory addresses // static bool write_function(struct vm_instruction_t *vm_instr, FILE *fp) { size_t i, num_locals; num_locals = vm_instr->arg2; char set_local_boilerplate[] = "M=0\n" "A=A+1\n"; char set_sp[] = "D=A\n" // D = number of locals "@SP\n" // get address of SP "M=D\n"; // set SP to new value // (functionName) // injects function entry label into the code // repeat nVars times: // nVars = number of local variables // push 0 // initializes local variable to 0 fprintf(fp, "(%s)\n", vm_instr->arg1); // write function label fprintf(fp, "@SP\n"); // get SP for (i = 0; i < num_locals; ++i) { fprintf(fp, "%s", set_local_boilerplate); // write 'push 0' } fprintf(fp, "%s", set_sp); return true; } static bool write_return(FILE *fp) { /* * frame = LCL // frame is a temporary variable * retAddr = *(frame - 5) // put return address in a temporary variable * *ARG = pop() // repositions the return value for the caller * SP = ARG+1 // repositions SP for the caller * THAT = *(frame - 1) // restores THAT for the caller * THIS = *(frame - 2) // restores THIS for the caller * ARG = *(frame - 3) // restores ARG for the caller * LCL = *(frame - 4) // restores LCL for the caller * goto retAddr // jump to where return address points */ char ret_boilerplate[] = "// *ARG = pop()\n" "@SP\n" "AM=M-1\n" // decrement A and SP "D=M\n" // "pop" (read) return value into D "@ARG\n" "A=M\n" // A points to argument segment "M=D\n" // *ARG = D // (D = pop()) "// SP = ARG+1\n" "D=A+1\n" // A still contains arg pointer "@SP\n" "M=D\n" "// frame = LCL\n" "// THAT = *(frame - 1)\n" "@LCL\n" "AM=M-1\n" // decrement A and LCL "D=M\n" // D = *(frame - 1) "@THAT\n" "M=D\n" // THAT = D "// THIS = *(frame - 2)\n" "@LCL\n" "AM=M-1\n" // decrement A and LCL "D=M\n" // D = *(frame - 2) "@THIS\n" "M=D\n" "// ARG = *(frame - 3)\n" "@LCL\n" "AM=M-1\n" // decrement A and LCL "D=M\n" // D = *(frame - 3) "@ARG\n" "M=D\n" "// R13 = retAddr = *(frame - 5)\n" "@LCL\n" "AM=M-1\n" // decrement A and LCL // now LCL = LCL - 4 "D=M-1\n" // D = *(frame - 4 - 1) "@R13\n" "M=D\n" // R13 = D (retAddr) "// LCL = *(frame - 4)\n" "@LCL\n" "A=M\n" // put pointer in address reg. "D=M\n" // D = prev. LCL value "@LCL\n" "M=D\n" // write prev LCL value to LCL "// goto retAddr\n" "@R13\n" // location of retAddr "A=M\n" // A = retAddr "0;JMP\n" // return "\n"; // idea: make global function, "call" this function when doing 'return' // similar to conditional branch (TODO) fprintf(fp, "%s", ret_boilerplate); return true; } static bool write_call(struct vm_instruction_t *vm_instr, FILE *fp) { uint16_t new_arg; /* * push retAddr // generates a label and pushes it to the stack * push LCL // saves LCL of caller * push ARG // saves ARG of caller * push THIS // saves THIS of caller * push THAT // saves THAT of caller * ARG = SP - 5 - nArgs // repositions ARG * LCL = SP // repositions LCL * goto functionName // transfers control to the callee * (retAddr) // injects the return address label into the code */ // Note: I use a different convention for generating return address // labels. The book does FilenameFunctionname$ret.<0-n> for n returns, // but the extra bookkeeping will annoy me. So I'll just use the current // line number instead. This works because the function name also // contains the file name, and the file name combined with a line number // provides a uniqueness guarantee, so return addresses won't collide. char call_boilerplate[] = "// push retAddr\n" "@%s.%hu\n" // will format to retAddr "D=A\n" // D = retAddr as constant "@SP\n" "M=M+1\n" // RAM[SP]++ // inc SP "A=M-1\n" // A = RAM[SP] - 1 // prev top "M=D\n" // RAM[SP] = local pointer "// push LCL\n" "@LCL\n" "D=M\n" // D = current local pointer "@SP\n" "M=M+1\n" // RAM[SP]++ // inc SP "A=M-1\n" // A = RAM[SP] - 1 // prev top "M=D\n" // RAM[SP] = arg pointer "// push ARG\n" "@ARG\n" "D=M\n" // D = current arg pointer "@SP\n" "M=M+1\n" // RAM[SP]++ // inc SP "A=M-1\n" // A = RAM[SP] - 1 // prev top "M=D\n" // RAM[SP] = arg "// push THIS\n" "@THIS\n" "D=M\n" // D = current this "@SP\n" "M=M+1\n" // RAM[SP]++ // inc SP "A=M-1\n" // A = RAM[SP] - 1 // prev top "M=D\n" // RAM[SP] = this "// push THAT\n" "@THAT\n" "D=M\n" // D = current that "@SP\n" "M=M+1\n" // RAM[SP]++ // inc SP "A=M-1\n" // A = RAM[SP] - 1 // prev top "M=D\n" // RAM[SP] = that "// ARG = SP - 5 - nArgs\n" "@SP\n" "D=M\n" // D = SP "@%hu\n" // will format to (5 + nArgs) "D=D-A\n" // D = SP - 5 - nArgs "@ARG\n" "M=D\n" "// LCL = SP\n" "@SP\n" "D=M\n" // D = SP "@LCL\n" "M=D\n" // LCL = SP "// goto functionName\n" "@%s\n" "0;JMP\n" "// (retAddr)\n" "(%s.%hu)\n" "\n"; //print_vm_instruction(vm_instr, fp); // TODO remove me new_arg = 5 + vm_instr->arg2; // probably breaks if arg2 > 32K lmfao fprintf(fp, call_boilerplate, vm_instr->arg1, file_line_no, new_arg, vm_instr->arg1, vm_instr->arg1, file_line_no); return true; } bool write_instruction(struct vm_instruction_t *vm_instr, FILE *fp) { fprintf(fp, "\n// %lu: %s\n", file_line_no, vm_instr->line); switch (vm_instr->cmd) { case C_ARITHMETIC: return write_arithmetic(vm_instr, fp); case C_PUSH: return write_push(vm_instr, fp); case C_POP: return write_pop(vm_instr, fp); case C_LABEL: return write_label(vm_instr, fp); case C_GOTO: return write_goto(vm_instr, fp); case C_IF: return write_if(vm_instr, fp); case C_FUNCTION: return write_function(vm_instr, fp); case C_RETURN: return write_return(fp); case C_CALL: return write_call(vm_instr, fp); default: err("error: unrecognized instruction (%u)\n", vm_instr->cmd); return false; } return false; // should never reach here tbh } #endif // _CODEWRITER_H |